

College of Agriculture
College of Engineering

Current and Emerging Technologies for Large Scale Production of Cellulosic Ethanol

Michael Ladisch

Laboratory of Renewable Resources Engineering Agricultural and Biological Engineering

Purdue University

Acknowledgements

US Department of Energy Office of the Biomass Program, Contract DE-FG36-04GO14017, CPBR

Dow Agrosciences

Genencor International

State of Indiana

Sonny Ramaswamy, Randy Woodson
Purdue University Agricultural Research Programs

Nathan Mosier, Wilfred Vermerris

Making Ethanol

Convert Biomass to sugars (pretreatment and enzymes)

Convert Sugars to ethanol using yeast or bacteria (fermentation)

Remove water from ethanol (separations)

Blend ethanol with gasoline

E10 = 10% ethanol

E85 = 85% ethanol

Biotown experiment

Corn

Supply Chain

Build on Existing Infrastructure for Corn

Trucking the feedstock

Trips of 5 to 40 miles, one way, for corn

Costs about

12 cents per bushel corn

4.6 cents per gallon ethanol

\$5 / ton (dry basis) corn

10 cents per cu. ft. corn

Corn Weighs more than Corn Stover (Cellulose)

translates to larger storage volumes for cellulose feedstock for a given ethanol production

Supply Chains: Store, then Transport

Bioprocessing Yeast **Enzymes** Glucose xylose Hydrolysis Fermentation **Pretreatment Fuel Ethanol** Distillation Delivery to markets Infrastructure

Projections: US Ethanol Production

2006 4.8 (corn)

2008 7.5 (corn + cellulose)

2015 12.0 (corn + <u>more cellulose</u>)

2030 60.0 (a lot of cellulose + corn)

Ethanol Plant Locations

Bioethanol Production

Components of plant cell walls

Chapple, 2006; Ladisch, 1979

Yeast Metabolism: pentose fermentation

Yields of Ethanol from Corn Stover (Cellulose Ethanol)

From Cellulose: 50 to 55 gal / ton

From Xylan: 30 to 35 gal / ton

Total: 80 to 85 gal / ton.

Corresponds to about 250,000 tons /yr for 20 million gal per year plant

Requires engineered yeast, pretreatment, cellulase enzymes

Other molecules from biomass sugars

Fermentable sugars are the feedstock

Products in addition to ethanol

Butanol, Acetone

2,3 Butanediol

Acetic, Lactic acid

Microbial polysaccahrides (for enhanced oil recovery)

Ladisch et al, 1979; 1991

Plant Cell Wall Genomics

Identified over 1100 genes involved in cell wall construction Generated over 900 mutants in Arabidopsis and 200 in maize; maize mutants represent a resource of genetic diversity for feedstock testing

Characterized cell walls of these materials using spectroscopic, chemical, and imaging assays

Identified novel cell-wall genes that can contribute to feedstock diversity

Used genetics and molecular biology to analyze the functions of cell-wall gene products

http://cellwall.genomics.purdue.edu

Trees: 5 to 10 tons /acre

Switchgrass: 5 to 10 tons /acre, less inputs

Elbersen, Wageningen, 2004

Using Hay

1 Bale = 970 lbs = 2000 miles

Assuming 50 gal x 40 mpg

Vision

Learning and engagement to illustrate science and engineering as agents of change

Transfer discovery from laboratory to the field or plant in a contiguous high tech / biotech / agriculture corridor

Combine engineering, science and agriculture to catalyze of sustainable growth of a US bioenergy sector

Work is not complete until it proven valuable to industry.

Challenges: What will it take?

Utilize biomass materials from a wide range of sources:

Cellulosics

Fiber

Corn

Apply biotechnology and nanotechnology to

develop bio-catalytic conversion routes

Yeasts

Fixed bed catalysts

Enzymes

Opportunities

Designer crops for bio-energy production

Bioprocess Engineering built around advanced biocatalysts (yeasts, enzymes, fixed bed catalysts) that process designer crops

High energy corn that maximizes polysaccharides rather than oil or protein

Understand role of forages (switchgrass) and wood poplar grown for energy crops

Seeds for the same

Research

Plant genomics

Microbial genomics

Bioprocess Engineering

Agriculture

Economics

Industrial Test Beds

